

Antonio Temporin

Perché un'analisi LCC

- L'analisi Life Cycle Costing (LCC) permette la stima economica dei costi (debitamente attualizzati) generati da tutte le fasi della vita utile dell'impianto dalla realizzazione alla gestione, dalla manutenzione allo smaltimento
- La LCC consente di ottimizzare la progettazione di un impianto ottenendo altresì migliori prestazioni in termini di durata, performance e sostenibilità dell'opera, grazie ad un adeguato dimensionamento, ai minori sprechi, al risparmio energetico e al contenimento della produzione di rifiuti
- Estendendo l'analisi a tutto il ciclo di vita dell'impianto si riesce a valutare l'effettiva economicità dell'investimento

La rete di distribuzione dell'aria e il risparmio energetico

Per un'attenta analisi del risparmio energetico garantito da una rete di distribuzione dell'aria efficace ed efficiente bisogna valutare:

- •l'isolamento termico
- •la tenuta pneumatica

Isolamento termico

- elevato isolamento termico garantito dal poliuretano espanso
- isolamento termico con λu=0,024 W/(m K) a 10 ° C

Tipo materiale	Conduttività term. ut. λ (10° c) [W/m° c)
Materassino lana vetro	0,040
Materassino neoprene	0,037
Pannello preisolato	0,024

Per eguagliare l'isolamento termico offerto da un canale in alluminio preisolato di spessore 20 mm occorrono:

- 33 mm di fibra di vetro
- 31 mm di neoprene

Isolamento termico

L'isolamento termico, le perdite per fuoriuscita e le perdite di carico incidono in modo determinante sulle "prestazioni energetiche" del canale. Il DPR 412 del 26/8/1993 sancisce che i canali d'aria calda per la climatizzazione invernale posti in ambienti non riscaldati devono essere coibentati con uno spessore di isolante non inferiore agli spessori indicati nella tabella riportata nel decreto stesso per tubazioni di diametro esterno tra 20 e 39 mm. La stessa tabella è presa come riferimento anche dalla norma UNI 10376 che tratta la materia dell'isolamento termico negli impianti sia di riscaldamento sia di raffrescamento.

Nel caso di canale posto in ambiente freddo il canale in alluminio preisolato (generalmente fornito con spessore 20 mm di coibente) dovrebbe rispondere con soli circa 17 mm.

Tenuta pneumatica: classe C

Grazie ai particolari sistemi di giunzione i canali preisolati in alluminio soddisfano i requisiti della classe C di tenuta secondo la norma UNI EN 13403:2003

Classe C certificata

Conclusioni.

Di seguito sono riportate le portate massime rilevate per livello di pressione e quelle previste dal paragrafo 4.3 della norma UNI EN 13403:2003, riferite alla superficie interna del canale in prova.

[Pa] -200 -500	Portata misurata	Portata ammissibile						
	[l/(s·m²)]	Classe A [l/(s·m²)]	Classe B [l/(s·m²)]	Classe C [l/(s·m²)]	Classe I [l/(s·m²)]			
	0,054	0,85	11	11	11			
	0,099	11	0,51	11	//			
-750	0,128	11	11	0,22	0,07			
+400	0,088	1,33	0,44	0,15	0,05			
+1000	0,159	11	0,80	0,27	0,09			
+2000	0,256	11	1,26	0,42	0,14			

Pertanto il campione in esame, costituito da un sistema di canalizzazione, realizzato con pannelli den
"PIRAL HD HYDROTEC" e presentato dalla ditta P3 S.r.l. - Via Don Giovanni Cortese, 5 - 35010 R

DI VILLAFRANCA PADOVANA (PD) - Italia, risulta soddisfare i requisiti richiesti dalla classe C.

I risultati riportati si riferiscono al solo campione provato e sono validi solo nelle condizioni in cui la
stata effettuata.

Il presente rapporto di prova, da solo, non può essere considerato un certificato di conformità.

L'analisi LCC: la case history di **Vimercate**

Ospedale di Vimercate

Posti letto: 500

Tempi di realizzazione: 3 anni Superficie totale: 100.000 mq

Costo stimato dell'opera: 200 milioni di euro Costo stimato impianti meccanici: 18 milioni

Canalizzazioni (stimate da computo): 109.930 mq

- canale pre-isolato in alluminio
- canale lamiera zincata isolato con materassino lana di vetro
- canale lamiera zincata isolato mediante neoprene

Sistema generico di confronto

	Canale preisolato in alluminio		Lamiera isolata lana vetro	Lamiera isolata neoprene					
L	COSTI DI PROGETTAZIONE								
		C	COSTI DI REALIZZAZIONE						
			COSTI DI ESERCIZIO						
Ľ		C	OSTI DI MANUTENZIONE						
	COSTI DI SMALTIMENTO								
	Costo totale		Costo totale	Costo totale					

Sistema generico di confronto

Canale preisolato in alluminio	Lamiera isolata lana vetro	Lamiera isolata neoprene	
C	OSTI DI PROGETTAZIONE	10	Trascurato poiché assunto uguale per i 3 casi
С	OSTI DI REALIZZAZIONE		
	COSTI DI ESERCIZIO		
С	OSTI DI MANUTENZIONE		Trascurato poiché ad oggi non sono effettuati interventi di bonifica regolari
	COSTI DI SMALTIMENTO		Trascurato poiché irrilevante nei 30 anni
Costo totale	Costo totale	Costo totale	

Performance termiche

- Le diverse caratteristiche dei materiali (spessori, conducibilità)
 comportano performance termiche diverse per i 3 impianti, a causa della diversa trasmittanza termica dell'impianto
- Pertanto per garantire un certo delta-temperatura si registrerà una diversa spesa di ENERGIA PRIMARIA
- Si è assunto uno scenario termico rappresentativo su base annua

Paramet	ro	Canale preisolato	Lana Vetro	Neoprene
Spessori	mm	20	25	13
Conducibilità	W/(m2*K)	0,024 0,040		0,037
Resist. liminare interna	m2*K/W		0,043	
Resist. liminare esterna	m2*K/W		0,122	
Trasmitt. term.struttura W/(m2*K)		0,858	1,266	1,937
Ore di funzionamento	h/yr		8760	

ore di funzionamento myr				
Parametro		Canale preisolato	Lana Vetro	Neoprene
Dispersione mix base annua	kWh/yr	4.463.630	6.580.441	10.070.911
Δ flusso en.term. dispersa	kWh/yr		2.118.812	5.607.282
Aumento Energia Primaria*	kWh/yr		2.354.235	6.230.313
	m³/yr		218.434	578.070
Differenza m³ Gas Naturale	m3/ (m2*vr)		1,987	5,259

Scenario	Scenario		Scenario		Scenario T interna canale a				Mix base annua
Estivo	°C	15	26	11	30%				
Intermedio	°C	20	20	0	40%				
Invernale	°C	27	20	7	30%				

Il delta positivo di energia primaria è attribuito come incremento consumo di gas naturale.

1 m³ gas = 0,40 €

Performance per perdite aria

- L'impianto aeraulico con canali preisolati in alluminio è certificato per tenuta pneumatica in Classe C. Gli altri due impianti possono generalmente arrivare in Classe B (maggiori perdite d'aria).
- Si è assunto lo stesso scenario termico precedente

Parametro		Р3	Lana di Vetro Neo		
Superfice totale m²			109.930		
Ore di funzionamento	h/yr		8.760		
Calore specifico aria	J/kg°C		1.017		
Densità aria kg/m³			1,29		
Classe appartenenza		С	В	В	
Perdita per fuoriuscita Classe	l/s*m²	0,07	0,29	0,29	
Pressione esercizio considerata	Pa	400	400	400	

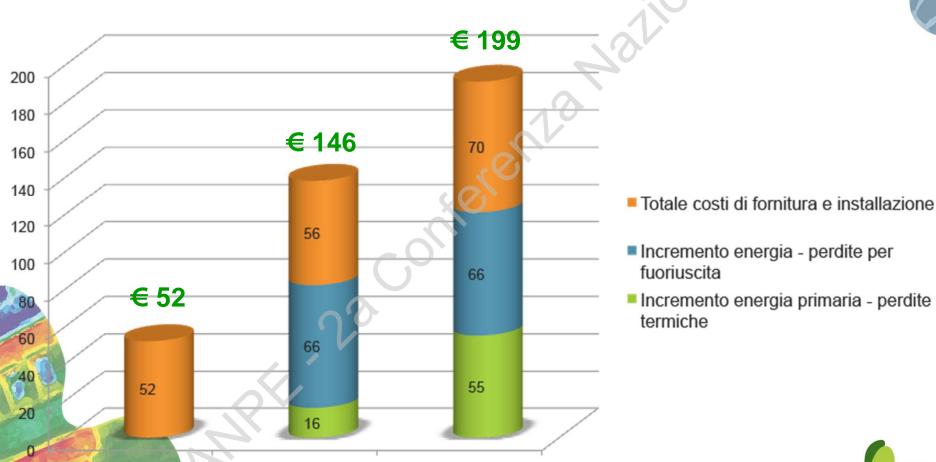
Parametro	•	P3	Lana Vetro	Neoprene
Dispersione mix base annua	kWh/yr	-	1.500.885	1.500.885
	kWh/(m2*y	r)	13,65	13,65

Il delta positivo di energia elettrica è attribuito ai 2 impianti isolati con Lana di Vetro e Neoprene.

1 kW/h = 0,16 €

Un'analisi comparativa: l'incidenza delle voci di costo

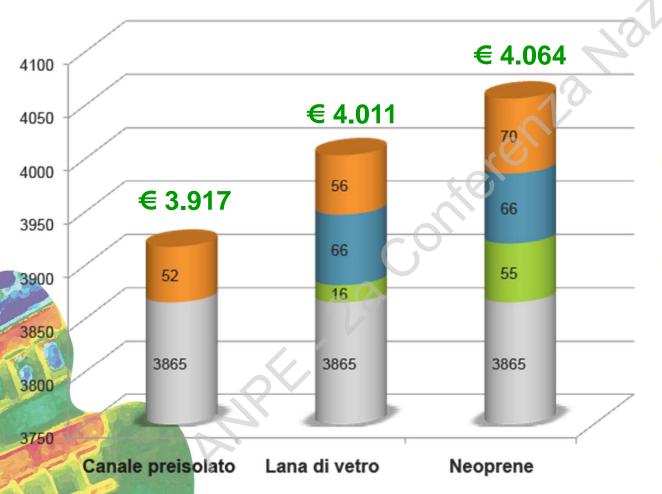
INFORMAZIONI GENERALI ISTALLAZIONE	Canale preisolato		Canale lamiera is. lana vetro			Canale lamiera is. neoprene			
Materiali condotte		р	annello P3		lamiera	acciaio		lamier	ra acciaio
Conduttività termica iniziale λ _i del materiale condotte	W/(m*K)		0,024	W/(m*K)			W/(m*K)		
Materiali rivestimento isolante			a n		lana	di vetro			neoprene
Spessore materiale rivestimento	mm		20	mm		25	mm		13
Conduttività termica iniziale λ _i del materiale isolante	W/(m*K)		0,024	W/(m*K)		0,040	W/(m*K)		0,037
Classe di appartenza impianto istallato			С			В			В
Perdite di carico	I/(s*m²)		0,07	I/(s*m²)		0,29	I/(s*m²)		0,29
Delta dispersioni termiche (energia primaria)	kWh/anno			kWh/anno		118.812	kWh/anno	5	5.607.282
Tasso di sconto	%				3,5%				
COSTI DI FORNITURA e ISTALLAZIONE	0	anale preisolato		Canale lam	iera is. lana vet	tro	Canale lami	era is. Neop	rene
Costo fornitura materiali									
Costo condotte comprese di accessori	€/m²		52,00	€/m²		43,21	€/m²		43,21
Costo materiale isolante			- 216	€/m²		12,55	€/m²		26,97
Totale COSTI DI FORNITURA e ISTALLAZIONE	€		52,00	J €		55,76	€		70,18
COSTI FASE DI MANUTENZIONE ED ESERCIZIO	C	anale preisolato		Canale lam	iera is. lana vet	ro	Canale lami	era is. Neop	rene
Costi diretti di esercizio	udm	specifica	€/m2	udm	specifica	€/m2	udm	specifica	€/m2
Consumi energetici ventilazione	€/kWh	0,16	3824,98	€/kWh	0,16	3824,98	€/kWh	0,16	3824,98
Incremento energia primaria - perdite termiche		-		€/(m2*yr)	0,79		€/(m2*yr)	2,1	0
incremento energia primaria - perdite termiche	€/m3 gas	0,40	0,00	€/m3 gas	0,40	23,84	€/m3 gas	0,40	63,10
Incremento energia - perdite tenuta idraulica		-		€/(m2*yr)	2,18		€/(m2*yr)	2,1	177.
333 /88	€/kWh	0,16	0,00	€/kWh	0,16	65,53	€/kWh	0,16	65,53
Totale COSTI DI MANUTENZIONE ED ESERCIZIO - NPV		€ 3.865,35		€	3.955,67		€3	3.995,34	
Totale COSTI DI REALIZZAZIONE	€		52	€		56	€		70
Totale COSTI DI ESERCIZIO - NPV	€		3.865	€		3.956	€		3.995
TOTAL LCC [€/m²]	€		3.917	€		4.011	€		4.066
TOTAL LCC [€]	€	430	0.633.880	€	440.97	6.807	€	446.9	23.176
Delta Costi Totali nei 30 anni [€]				€	10.34	2.928	€	16.2	89.296



Canale preisolato

Lana di vetro

Un'analisi comparativa: l'incidenza delle voci di costo



Neoprene

Un'analisi comparativa: l'incidenza delle voci di costo



- Totale costi di fornitura e installazione
- Incremento energia perdite per fuoriuscita
- Incremento energia primaria perdite termiche
- Consumi energetici

Un'analisi comparativa: l'incidenza delle voci di costo

Grazie per l'attenzione

Antonio Temporin

