
Isolanti e sostenibilità degli edifici: efficienza energetica nel periodo estivo ed invernale

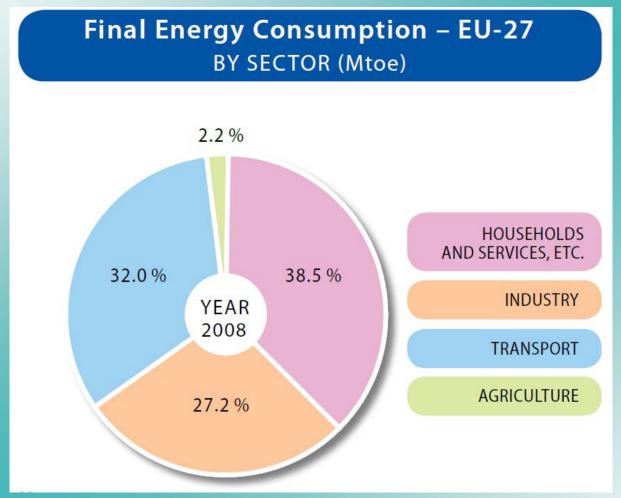
prof. ing. Paolo Baggio - Univ. di Trento DICA - Dip. di Ingegneria Civile e Ambientale

Una premessa:

- La sostenibilità ha vari aspetti: materiali, uso del territorio, acqua, aria, energia.
- Questo intervento tratterà l'uso sostenibile delle energia!

I TEMI PROGETTUALI (es. LEED 2009)

II 31% del punteggio riguarda l'energia II 45% riguarda energia più IAQ


La Sostenibilità Energetica

- L' Unione Europea e gli USA sono attualmente concentrati sul miglioramento della prestazione energetica degli edifici
- Anche i maggiori protocolli di certificazione assegnano a questo aspetto un'importanza rilevante

Il traguardo: Near Zero Energy Building

"near zero energy building" «edificio a energia quasi zero»: edificio ad altissima prestazione energetica, Il fabbisogno energetico molto basso o quasi nullo dovrebbe essere coperto in misura molto significativa da energia da fonti rinnovabili, compresa l'energia da fonti rinnovabili prodotta in loco o nelle vicinanze (dalla Direttiva 2010/31/UE)

PERCHE' "LOW ENERGY BUILDINGS"?

Final energy consumption in Europe (source: EU energy and transport in figures 2011 - © European Communities, 2011)

Resistenza termica di strati omogenei

 I dati termici utili possono essere espressi sia sotto forma di conduttività termica utile che di resistenza termica utile. Se è nota la conduttività termica, determinare la resistenza termica R dello strato con la formula:

$$R = d/L$$

dove:

d è lo spessore dello strato di materiale nel componente;

è la conduttività termica utile calcolata secondo UNI EN ISO 10456:2008 oppure ricavata da certificati di prova.

Conduttività termica λ (lambda)

- materiali da costruzione: valori compresi tra circa 0,2 W/(m K), (legnami - calore trasmesso in direzione perpendicolare alle fibre) e 1,9 W/(m K) (calcestruzzo con densità pari a 2400 kg/m³)
- laterizi: valori intermedi compresi tra 0,25 W/(m K) (mattoni forati con densità 600 kg/m3) e 0,9 W/(m K) (mattoni pieni con densità 2000 kg/m3)
- I valori da utilizzare per i calcoli relativi alle dispersioni termiche degli edifici sono reperibili anche nella norme piu vecchie UNI 10351 "Materiali da costruzione -: Conduttività termica e permeabilità al vapore e nella norma UNI EN 12524:2001 "Materiali e prodotti per edilizia Proprietà igrometriche Valori tabulati di progetto".

Struttura materiali edili

4eg densità di flusso termico dovuto alla conduzione nel gas

¶es densità di flusso termico dovuto alla conduzione nel solido

qet densità di flusso termico dovuto alla conduzione nel liquido

q_r densità di flusso termico dovuto alla radiazione

PNVh_v densità di flusso termico convettivo dovuto al movimento del vapor d'acqua

 Q V_i A_α densità di flusso termico convettivo dovuto al movimento dell'aria secca

 $P_1 V_1 b_1$ densità di flusso termico convettivo dovuto al movimento dell'acqua

Paolo Baggio - ANPE - 2013

9

Materiali Isolanti 1/3

- Materiali isolanti: costituiti da una matrice solida a struttura fibrosa, granulare, cellulare o porosa ricca di cavità piene d'aria.
- densità molto bassa, (compresa tra 20 kg/m³ e 300 kg/m³)
 perché lo spazio interno è per la maggior parte riempito d'aria
- trasmissione del calore avviene per mezzo di meccanismi diversi: conduzione attraverso la parte solida e attraverso il gas intrappolato, convezione e radiazione nel gas
- La trasmissione termica è il risultato della combinazione dei vari meccanismi: nei materiali isolanti si definisce la conduttività apparente

Materiali Isolanti 2/3

- Dal momento che l'aria ha una conduttività termica molto bassa, pari a 0,026 W/(m K), e che la matrice solida dei materiali isolanti ne impedisce il movimento (altrimenti insorgerebbe il meccanismo della convezione termica) i materiali isolanti (come fibra di legno, fibra di vetro, lana minerale, polistirolo o poliuretano) hanno conduttività apparente bassa, usualmente compresa tra 0,035 e 0,055 W/(m K).
- Se la densità scende a valori troppo bassi (< 20 kg/m³) le prestazioni dei materiali degradano perché aumenta la trasparenza e quindi aumenta lo scambio termico per radiazione

Materiali Isolanti 3/3

- Nel caso di materiali isolanti costituiti da cellule chiuse, è possibile sostituire l'aria con altri gas ad alto peso molecolare (ovviamente non tossici e non dannosi per l'atmosfera) e bassa conducibilità termica, tipicamente λ compresa nell'intervallo 0,0124 0,0145 W/(m K) circa metà dell'aria, per ridurre ulteriormente la conduttività termica apparente.
- Tali isolanti, però, sono esposti al rischio di degrado per invecchiamento in seguito ai processi di diffusione del gas con conseguente diminuzione della resistenza termica.

Il Poliuretano (PUR)

- •II Poliuretano è un materiale isolante espanso a cellule chiuse con un elevato grado di resistenza alla diffusione dei gas (e del vapore).
- •Si presta, pertanto, particolarmente bene a venire espanso con gas a bassa conducibilità termica perché resiste ai fenomeni di diffusione. Tale prestazione può essere ulteriormente migliorata rivestendo l'isolante con una pellicola metallica.

Il Poliuretano (PUR)

- La norma UNI EN 13165:2009 "Isolanti termici per edilizia Prodotti di poliuretano espanso rigido (PUR) ottenuti in fabbrica Specificazione "fornisce le metodologie per valutare il valore utile di progetto, tenendo conto dell'invecchiamento, della conduttività λ_D
- La *conduttività apparente* di progetto λ_D per i pannelli di poliuretano non rivestiti è nel range 25-28 mW/(m K), per quelli rivestiti con pellicola metallica è nel range 23-25 mW/(m K)

Resistenza superficiale

 Secondo la norma UNI EN ISO 6946 I valori da utilizzare per la resistenza superficiale di una parete sono I seguenti:

Resistenze termiche superficiali (in m² · K/W)

	Direzione del flusso termico		
	Ascendente	Orizzontale	Discendente
$R_{\rm si}$	0,10	0,13	0,17
R _{se}	0,04	0,04	0,04

I valori del prospetto 1 sono valori di calcolo. Per la dichiarazione della trasmittanza termica di componenti e negli altri casi in cui sono richiesti valori indipendenti dal senso del flusso termico, si raccomanda di scegliere valori corrispondenti al flusso orizzontale.

Resistenza Termica totale

• La resistenza termica totale R_T di un componente piano per edilizia, costituito da strati termicamente omogenei perpendicolari al flusso termico, è dato da:

$$R_T = R_{si} + R_1 + R_2 + R_3 + R_n + R_{se} [(m^2 K) / W]$$

• La trasmittanza termica *U* vale:

$$U = 1/R_T$$
 [W/(m² K)]

Qualche numero

$$U = 0.3 \text{ W/m}^2\text{K} \rightarrow R = 3.33 \text{ m}^2\text{K} / \text{W}$$

25 cm mattoni pieni (λ = 0,8 W/m²K) \rightarrow R = 0,31 m²K / W

25 cm mattoni forati (λ = 0,25 W/m²K) \rightarrow R = 1,00 m²K / W

10 cm isolante (λ = 0,04 W/m²K) \rightarrow R = 2,50 m²K / W

10 cm isolante (λ = 0,025 W/m²K) \rightarrow R = 4,00 m²K / W

Parametri (ritenuti) rilevanti nel comportamento estivo

- Massa unitaria
- Trasmittanza periodica (o dinamica)
- Ritardo

Capacità termica 1/2

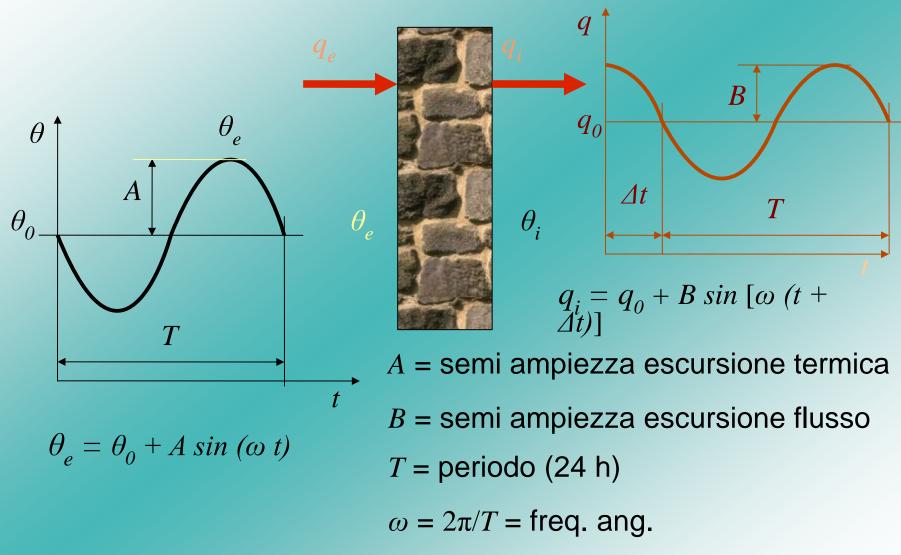
Il calore specifico c è il rapporto tra la quantità di calore somministrato ΔQ e la variazione di temperatura ΔT :

$$c = \Delta Q / \Delta T$$

(o più correttamente in termini infinitesimi c = dQ/dT)

Capacità termica 2/2

 Il calore specifico dei materiali da costruzione si aggira intorno a:


$$c = 1 \text{ kJ /(kg K)}$$

La capacità termica:

$$C_t = c m = c \rho V$$

ullet dipende quindi dalla densità ho del materiale

Trasmittanza Termica Periodica (1/3)

Trasmittanza Termica Periodica (2/3)

La trasmittanza termica periodica tra esterno ed interno è definita come:

$$Y_{ie} = B/A = Uf$$
 [W/(m²K)]

La potenza termica max trasmessa è quindi pari a:

$$\begin{aligned} q_{max} &= U \left(\theta_e - \theta_i \right) + A Y_{ie} & \left[\text{W/m}^2 \right] \\ q_{max} &= U \left[\left(\theta_e - \theta_i \right) + A f \right] & \left[\text{W/m}^2 \right] \end{aligned}$$

Trasmittanza Termica Periodica (3/3)

In altre parole, in regime estivo (quando la temperatura media esterna è circa eguale a quella interna) è "come se" la trasmittanza termica stazionaria *U* venisse diminuita di una quantità pari a:

$$Y_{ie}A/(\theta_e - \theta_i) = UfA/(\theta_e - \theta_i)$$

 Y_{ie} = trasmittanza termica periodica f = fattore di attenuazione A = semiampiezza dell'escursione termica

Involucro e capacità termica (1/3)

Con i livelli di isolamento attualmente previsti, il flusso termico attraverso l'involucro assume valori modesti (sia d'inverno , quando l'unico parametro è U, sia d'estate, quando contano anche f e Y_{ie})

Pertanto è necessaria la presenza di adeguata capacità termica, ma non è indispensabile che la stessa sia dovuta soltanto alla massa dell'involucro, anche le strutture interne possono contribuire.

Involucro e capacità termica (2/3)

Va ricordato che per evitare il surriscaldamento interno, il contributo usualmente cercato è dato solamente dalla capacità termica disponibile all'interno dell'edificio. In altre parole contribuisce alla capacità termica soltanto:

il lato interno delle pareti per uno spessore massimo di 10 cm;

tale spessore non può superare quello compreso tra la superficie interna ed il primo strato di isolante; non può comunque essere conteggiato più di metà dello spessore della parete.

Involucro e capacità termica (3/3)

Nel clima del Nord Italia, usualmente il contributo della parte opaca dell'involucro al surriscaldamento estivo risulta inferiore al 10%

Solamente le strutture orizzontali (tetti), particolarmente esposte alla radiazione solare, beneficiano in misura apprezzabile della capacità termica dovuta al materiale presente.

Umidità 1/2

- L'umidità è sempre presente nell'aria che, in effetti, può essere considerata una miscela di aria secca e vapore.
- All'interno di un edificio sono quasi sempre presenti sorgenti di vapore.

Umidità 2/2

- L'umidità può causare danni alle strutture (specialmente al legno ed ai materiali isolanti) e favorire la crescita di muffe.
- Occorre pertanto tenerla sotto controllo.

Bilancio di massa di un edificio

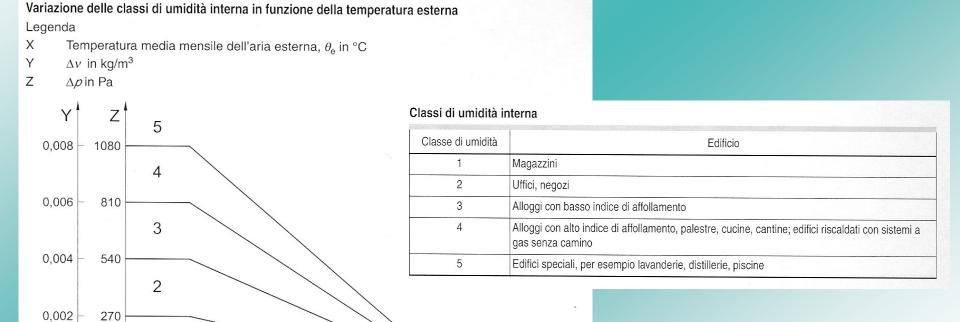
All'interno di un edificio sono presenti sorgenti di vapore quali:

- Persone
- Igiene personale
- .Cottura cibi
- Lavaggio indumenti
- .Asciugatura panni

Bilancio di massa di un edificio

$$G_{as}x_{e} + G =$$
 $G_{as}x_{i}$
 $G = \text{produz. vapore [kg/h]}$
 $G_{as} = \text{port. aria ventilaz. [kg/h]}$
 $G_{as}x_{e}$
 $G_{as}x_{e}$
 $G_{as}x_{e}$
 $G_{as}x_{e}$
 $G_{as}x_{e}$
 $G_{as}x_{e}$
 $G_{as}x_{e}$
 $G_{as}x_{e}$
 $G_{as}x_{e}$
 $G_{as}x_{e}$

Bilancio di massa di un edificio


- Dal bilancio si deduce che normalmente l'umidità all'interno dell'edificio è maggiore rispetto all'esterno.
- Un altro modo di esprimere il bilancio è:

$$p_{\rm i} = p_{\rm e} + \Delta p$$

La sovrapressione Δp è inversamente proporzionale alla portata di ventilazione G_{as}

Bilancio di massa di un edificio Stima *∆p*

Il valore di ∆p può, in alternativa, essere stimato a partire dalla temperatura esterna come indicato nell'Appendice A della UNI EN ISO 13788

20

25

X

15

10

-5

-5

0

5

Bilancio energetico dell'edificio (ante 2005)

Bilancio energetico dell'edificio (post 2006)

Evoluzione del bilancio energetico dell'edificio

 La ventilazione diviene una quota importante del fabbisogno complessivo (può incidere per 20- 30 kWh/m²)

Sistemi di ventilazione controllata con recupero termico

Ventilazione controllata (1/4)

- In uso da tempo per edifici commerciali e uffici con indici di affollamento elevati (i.e. impianti di condizionamento) dove è ormai prassi consolidata il recupero termico (ruote entalpiche, etc.).
- Ultimamente vengono proposti anche per gli edifici residenziali

Ventilazione controllata (2/4)

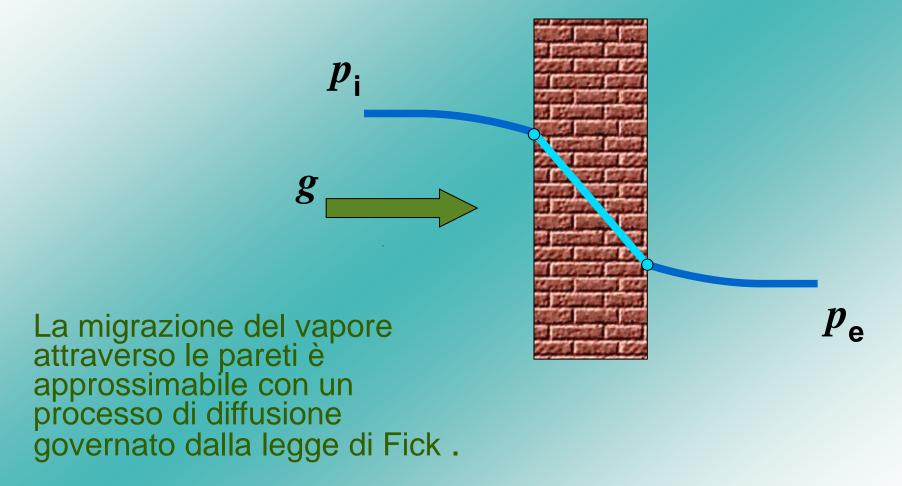
- Negli edifici residenziali occorre prestare attenzione a:
 - portata aria non inferiore a 0,5 vol./h (sorgenti interne di inquinamento: cucina, persone, candele)
 - compatibilità con cucine, stufe (in maiolica), caminetti, e le indispensabili prese d'aria (UNI 7129)!
 - i consumi elettrici dovuti a ventilatori pompe di circolazione ed eventuale piastra di cottura

Ventilazione controllata (3/4)

- Negli edifici residenziali occorre prestare attenzione a:
 - manutenzione (pulizia e sostituzione filtri): chi la fa, chi la paga ?
 - il funzionamento nelle mezze stagioni: nei climi umidi potrebbero essere necessarie portate più elevate (o l'apertura delle finestre)
 - il funzionamento estivo: il ventilatore può facilmente surriscaldare l'aria ed il raffrescamento geotermico potrebbe non essere sufficiente!

Ventilazione controllata (4/4)

- Va in ogni caso progettata anche la ventilazione dell'edificio
- Nei casi più complessi è opportuno procedere a simulazioni


Condensazione interstiziale (1/2)

- La maggior parte dei materiali impiegati in edilizia è costituta da una matrice solida attraversata da un reticolo di pori interconnessi (microstruttura porosa o fibrosa).
- A causa della differenza tra la pressione di vapore interna ed esterna ($p_i > p_e$) si instaura un flusso di vapore che migra attraverso le pareti (il flusso per unità di area, o densità di flusso, espresso in [kg/m²s], viene indicato con la lettera g).

Condensazione interstiziale (2/2)

- Tale flusso di vapore è, in termini assoluti, di entità molto modesta e tale da non modificare apprezzabilmente il bilancio di vapore degli ambienti.
- Il flusso di vapore può però, in alcune situazioni, condensare internamente alle strutture portando, nel tempo, all'accumulo di acqua all'interno delle stesse.
- La condensa accumulata provoca fenomeni di degrado e peggiora le proprietà isolanti.

Condensazione interstiziale Migrazione del vapore

Caratteristiche dei rivestimenti superficiali esterni

- I rivestimenti superficiali esterni debbono proteggere dagli agenti atmosferici, in particolare dalla pioggia.
- Ma, per avere un buon funzionamento della struttura, debbono anche permettere la fuoriuscita del vapore (talvolta viene utilizzato il termine, tecnicamente impreciso, traspirabilità).

Osservazioni conclusive

- Nessun materiale è adatto per tutti gli usi !
- Il poliuretano espanso è particolarmente indicato dove occorre ottenere una resistenza termica elevata con spessori ridotti ed a costi ragionevoli!
- Essendo un materiale a cellule chiuse, è inoltre poco suscettibile a fenomeni di degrado dovuti alla migrazione dell'umidità

Grazie a tutti voi per l'attenzione!