

Poliuretano Espanso rigido & Prevenzione incendi

Rita Anni

PerchéPoliuretano & Prevenzione incendi

- Il poliuretano espanso rigido è un materiale organico e partecipa ad una eventuale combustione
- E' importante conoscerne le caratteristiche e prestazioni per utilizzarlo nel rispetto delle regole di prevenzione incendi
- Importanti modifiche negli ultimi 10-15 anni:

Introduzione metodi di prova armonizzati e sistema Euro classi

Nuove schiume, rivestimenti e prestazioni

La struttura del libro

Cos'è il poliuretano

Sicurezza al fuoco degli edifici

Sviluppo degli incendi

Protezione attiva e passiva

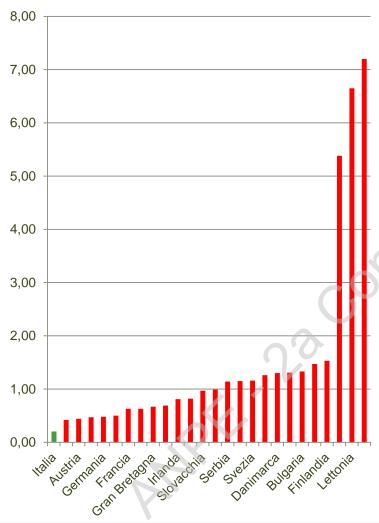
Comportamento al fuoco del poliuretano

I prodotti della combustione

Test in condizioni reali di esercizio

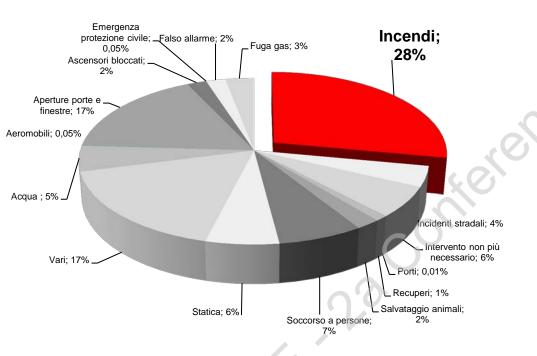
Conclusioni

Opere e sicurezza in caso di incendio

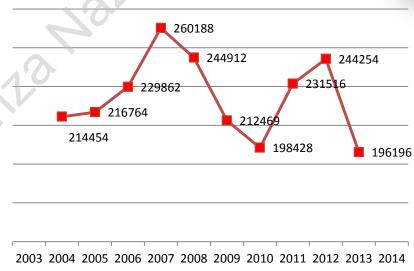

Per la CPR è un requisito fondamentale; l'opera deve essere concepita e costruita in modo che, in caso di incendio:

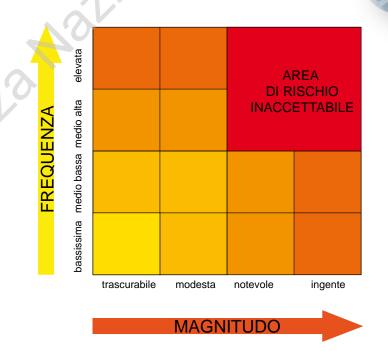
- la capacità portante dell'edificio possa essere garantita per un periodo di tempo determinato;
- la produzione e la propagazione del fuoco e del fumo all'interno delle opere siano limitate;
- la propagazione del fuoco ad opere vicine sia limitata;
- gli occupanti possano lasciare l'opera o essere soccorsi altrimenti;
- sia presa in considerazione la sicurezza delle squadre di soccorso

Sicurezza degli edifici italiani


2008 - 2012 Media Decessi a causa di incendi per 100000 abitanti (World Fire Statistics 2014 n.19)

Italia	0,20	
Olanda	0,42	
Austria	0,44	
Spagna	0,47	
Germania	0,48	
Grecia	0,50	
Francia	0,63	
Cipro	0,63	
Gran Bretagna	0,67	
Slovenia	0,69	
Irlanda	0,81	
Croazia	0,82	
Slovacchia	0,97	
Norvegia	0,99	
Serbia	1,14	
Romania	1,15	
Svezia	1,16	
Rep. Ceca	1,26	
Danimarca	1,30	
Ungheria	1,31	
Bulgaria	1,33	
Polonia	1,47	
Finlandia	1,53	
Estonia	5,38	
Lettonia	6,65	
Lituania	7,20	




2004-2013 - Numero di Interventi per incendi (Annuario Statistico del Corpo Nazionale dei Vigili del Fuoco 2014)

Prevenzione e protezione

- Misure di prevenzione
 - Riducono la probabilità (frequenza) dell'insorgere degli incendi
- Misure di protezione
 - Limitano le conseguenze (magnitudo) dell'incendio attraverso sistemi o dispositivi di natura attiva o passiva

Analisi dei rischi

- Le regole tecniche sono sviluppate per contenere il rischio di incendi entro limiti considerati accettabili
- Nella maggior parte dei Paesi si stanno sviluppando regole tecniche di impostazione prestazionale più che prescrittiva. Queste valorizzano la fase di valutazione dei rischi per persone, cose e ambiente
- E' inevitabile prendere atto che il rischio non potrà mai essere ridotto a 0.

Protezione attiva e passiva

Protezione attiva

- Gli impianti, i mezzi o le precauzioni organizzative che consentono di intervenire direttamente sull'incendio mediante l'intervento umano o l'attivazione, manuale o automatica, di impianti e attrezzature.
 - gli estintori portatili e carrellati,
 - la rete idrica antincendio,
 - gli impianti di spegnimento automatici,
 - i dispositivi di rilevazione incendi/fumi e di allarme,
 - gli evacuatori di fumo e di calore,
 - l'illuminazione di sicurezza,
 - le indicazioni delle uscite di sicurezza
 - la segnaletica di sicurezza,

Protezione attiva e passiva

Protezione passiva

- Le misure progettuali e le scelte di materiali in grado di ostacolare lo sviluppo di un incendio, di limitarne l'estensione e di contenere i danni a persone e cose senza intervenire direttamente sull'incendio stesso.
 - le barriere antincendio,
 - le strutture dotate di caratteristiche di resistenza al fuoco,
 - la reazione al fuoco dei materiali,
 - i sistemi di ventilazione,
 - le vie d'esodo

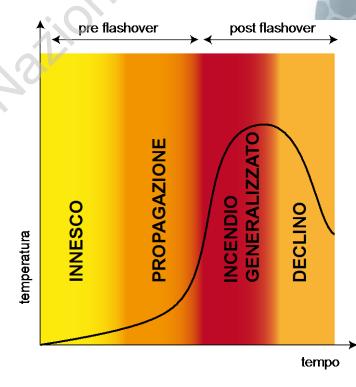
Resistenza al fuoco

L'attitudine di una struttura o di un elemento di compartimentazione a conservare, durante un periodo determinato di tempo, la stabilità, la tenuta e l'isolamento richiesto (REI).

- R = Stabilità conservare caratteristiche di resistenza meccanica
- E = Tenuta non consentire il passaggio di fiamme e vapori e gas sul lato non esposto all'azione del fuoco,
- I = Isolamento termico ridurre la trasmissione del calore sul lato non esposto
- Altri parametri aggiuntivi

Resistenza al fuoco

- Si valuta per garantire un adeguato livello di sicurezza anche in condizioni di incendio generalizzato
- Si esprime in minuti
- Si determina in base a risultati di prove sperimentali, a risultati di calcoli analitici o a verifiche tabellari
- Si utilizza il termine "resistente al fuoco" solo per le strutture o elementi costruttivi che garantiscono la capacità portante e/o quella di compartimentazione.
- Per i materiali isolanti, le condotte e tutto ciò che non è struttura portante o elemento di compartimentazione si valuta la reazione al fuoco.



Reazione al fuoco

«Il comportamento di un materiale che contribuisce con la propria decomposizione al fuoco a cui è sottoposto in condizioni determinate»

- La reazione al fuoco influenza l'andamento dell'incendio nelle fasi iniziali di ignizione e prima propagazione (importante per i materiali di rivestimento, arredo e finitura che per primi possono essere coinvolti nell'incendio)
- Dopo il flash over tutti i materiali combustibili partecipano all'incendio a prescindere dalle loro prestazioni di reazione al fuoco.

Prodotti da costruzione marcati CE

Sistema di classificazione armonizzato a livello europeo

· · · · · · · · · · · · · · · · · · ·			
Reazione al fuoco Euroclassi e metodi di prova (per i prodotti da costruzione esclusi i pavimenti)			
	EUROCLASSE	Metodo di prova	Metodi di prova alternativi o classificazioni aggiuntive
inorganici	A1	UNI EN ISO 1182 UNI EN ISO 1716	
	A2	UNI EN ISO 1182	UNI EN ISO 1716 UNI EN ISO 13823 (SBI) - produzione di fumo (s) - gocce/particelle ardenti (d)
organici	В	UNI EN ISO 13823 (SBI) UNI EN ISO 11925 (esposizione 30")	produzione di fumo (s) gocce/particelle ardenti (d)
	С	UNI EN ISO 13823 (SBI) UNI EN ISO 11925 (esposizione 30")	produzione di fumo (s) gocce/particelle ardenti (d)
	D	UNI EN ISO 13823 (SBI) UNI EN ISO 11925 (esposizione 30")	produzione di fumo (s) gocce/particelle ardenti (d)
	E	UNI EN ISO 13823 (SBI) UNI EN ISO 11925 (esposizione 15")	gocce/particelle ardenti (d)
	F	Reazione non determinata	

Reazione al fuoco del singolo prodotti e in applicazione

- I produttori devono dichiarare la reazione al fuoco del prodotto a sé stante, così come viene immesso sul mercato
- Possono dichiarare anche le prestazioni in condizioni di impiego definite (per i materiali isolanti sono definiti tre possibili materiali di rivestimento: cartongesso, pannello in legno truciolare e lamiera grecata)
- Possono dichiarare le prestazioni in applicazioni descritte da norme ETAG o dal singolo produttore che ne deve dettagliare tutte le modalità applicative identificando anche il possibile campo di impiego.

Comportamento al fuoco di pacchetti applicativi

- Test su coperture per fuoco proveniente dall'esterno [EN 13501-5]
 - sistema di classificazione fondato su 4 test che simulano diverse condizioni di innesco e sviluppo degli incendi:

- t1- Solo tizzone ardente
- t2 Tizzone ardente in presenza di vento
- t3 Tizzone ardente in presenza di vento e irraggiamento
- t4 -Tizzone ardente in presenza di vento e calore radiante aggiuntivo
- Test su facciate in fase di sviluppo

Prodotti al di fuori della CPR e/o non marcati CE

- Es. Canali per il trasporto dell'aria, blocchi e lastre non destinate ad isolamenti di opere edili o di ingegneria civile
- Si adotta il sistema di classificazione italiana (da 0 a 5)
- Per i prodotti rivestiti si utilizza la doppia classificazione (es. canali per il trasporto dell'aria classe 0-1)

I parametri che influenzano il comportamento al fuoco dei poliuretani

la tecnologia produttiva

- Nelle produzioni in continuo per isolamenti in edilizia sono sempre presenti rivestimenti che sono parte integrante e inscindibile dei prodotti
- il tipo di schiuma poliuretanica
 - PUR/PIR
- il tipo di formulazione
 - PUR e PIR possono variare le loro prestazioni in funzione della ricetta utilizzata
- la destinazione d'uso e la metodologia applicativa
 - In pareti, pavimenti e solai i poliuretani non sono mai impiegati a vista, sono sempre protetti da materiali incombustibili e/o resistenti al fuoco

Range di classificazione di prodotti isolanti in poliuretano

Range di caratteristiche disponibili sul mercato Ε s3 s3 s2 s1 s2 s1 d0 d0 PRODOTTO Pannelli schiuma PIR con rivestimenti metallici >80 µ Pannelli schiuma PIR con un lato rivestito in cartongesso e uno con rivestimenti inorganici Pannelli schiuma PIR con rivestimenti inorganici Pannelli schiuma PUR con rivestimenti metallici >80 µ Pannelli schiuma PUR con rivestimenti inorganici Pannelli schiuma PIR/PUR con rivestimenti organici Schiuma PUR senza rivestimenti, spruzzo o colata **END USE CONDITION** Sistema Cappotto ETICS Pannelli in Euroclasse E Copertura sotto lamiera Pannelli in Euroclasse E Dietro cartongesso Pannelli in Euroclasse E 2ª Conferenza Nazionale Po Schiuma a spruzzo Euroclasse

EUROCLASSI REAZIONE AL FUOCO Prestazioni indicative di prodotti isolanti in poliuretano espanso rigido e delle loro principali applicazioni

I progetti di ricerca in condizioni reali di esercizio

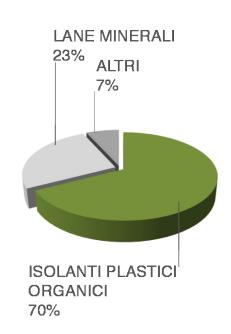
- La sola reazione al fuoco dei singoli materiali non è sufficiente a descrivere il loro reale comportamento al fuoco in opera
- Su questo aspetto si sono sviluppati, sia in Europa e sia in Italia, numerosi progetti di ricerca svolti in collaborazione con laboratori notificati
- I test comparativi hanno selezionato, come applicazioni di confronto, quelle che utilizzano prodotti isolanti inorganici con le migliori classi di reazione al fuoco

I progetti realizzati

- Isolamento in copertura sotto membrane impermeabili bituminose Test Broof (t2)
- Isolamento di pareti dall'esterno con sistemi a cappotto ETICS
- Isolamento di pareti dall'interno con sistemi isolanti preaccoppiati a cartongesso
- Comportamento al fuoco di condotte preisolate in poliuretano
- Comportamento al fuoco di facciate con sistema a cappotto ETICS
- Resistenza al fuoco dall'interno di coperture a falde con struttura in legno
- Resistenza al fuoco di pareti a telaio in legno
- Comportamento all'incendio di copertura in lamiera isolata

In tutti i test i pacchetti applicativi con isolamenti in poliuretano hanno fatto registrare prestazioni analoghe (e in qualche caso migliori) a quelli con isolanti inorganici

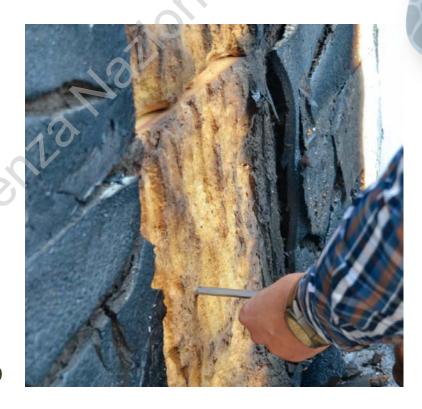
Scelta del materiale isolante e prevenzione incendi


- Gli incendi hanno origine nella maggior parte dei casi dall'interno degli ambienti.
 Gli isolanti termici sono posizionati all'interno delle strutture edilizie, possono essere coinvolti solo dopo il cedimento delle strutture o dei materiali incombustibili che li proteggono. In questa fase il flash over è già stato raggiunto e l'incendio è incontrollabile.
- La violenza e la durata degli incendi dipendono dal quantitativo di materiale combustibile coinvolto. Il contenuto degli edifici determina un carico di incendio più importante di quello dei materiali da costruzione.

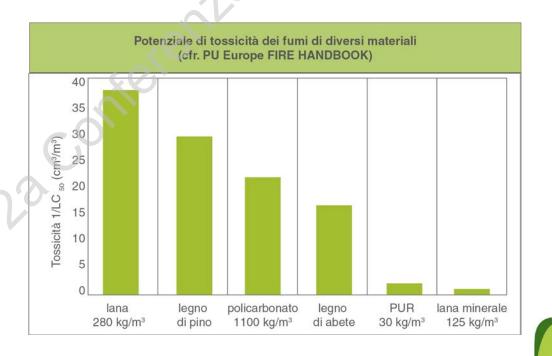
Isolanti incombustibili/combustibili

- Non c'è alcuna evidenza statistica che permetta di attribuire all'impiego di materiali isolanti inorganici una riduzione della frequenza degli incendi degli edifici.
- Nell'edilizia italiana gli isolanti termici organici detengono oltre il 70% del mercato e gli edifici italiani sono tra i più sicuri.
- Nei paesi Scandinavi l'utilizzo delle lane minerali incide per l'85% e la frequenza degli incendi è molto elevata.

- L'adozione di particolari rivestimenti e l'utilizzo di schiume a migliorato comportamento al fuoco consente di ottenere le classi migliori previste per gli isolanti organici
- Il poliuretano espanso è un isolante termico efficiente e il suo impiego permette di limitare gli spessori e le masse necessarie a raggiungere il livello di isolamento richiesto. La limitazione delle masse coinvolte riduce il carico di incendio delle strutture edilizie.
- Quando il poliuretano viene impiegato in isolamenti di soffitti, pareti e pavimenti è sempre protetto da strutture e/o materiali incombustibili. Non viene quindi a contatto con le fiamme se non a flash over raggiunto.



- Le temperature di ignizione (320-420° C) e autoignizione (420 - 550° C) dei poliuretani sono elevate e la loro decomposizione inizia quando le possibilità di evacuazione e intervento sono già limitate dalle condizioni proibitive dell'ambiente
- Le prove di grande e media scala effettuate su strutture isolate con poliuretano hanno evidenziato prestazioni analoghe a quelle di strutture isolate con materiali incombustibili.


- La combustione del poliuretano espanso rigido genera la carbonizzazione della zona direttamente esposta alle fiamme. La struttura carboniosa che si forma rallenta l'avanzata delle fiamme e ne limita la propagazione.
- Il poliuretano non da' luogo a «Glowing» e «Smouldering»

 Lo sviluppo di fumi dalla combustione dei poliuretani e la loro tossicità sono analoghi a quelli generati da altri materiali organici presenti all'interno degli ambienti e nelle strutture e nei componenti edilizi

Rita Anni

