

AN INVESTIGATION INTO THE RELEVANCE OF THE CONTRIBUTION TO TOXICITY OF DIFFERENT CONSTRUCTION PRODUCTS IN A FURNISHED ROOM FIRE

Una ricerca sul contributo alla tossicità di diversi prodotti da costruzione nell'incendio di una stanza arredata

Dipl. Phys. Edith Antonatus

Objective of the Research

Contribution to European project:

"Study to evaluate the need to regulate within the Framework of Regulation (EU) 305/2011 on the toxicity of smoke produced by construction products in fires"

- Evaluate contribution of building fabric vs building content to:
 - Heat Release Rate
 - Smoke obscuration
 - Toxicity of fire effluents
- Evaluate relevance of toxic combustion gases from insulation products to safety of users

- Contributo al progetto europeo ...
- Valutare il contributo della «struttura» rispetto al «contenuto» considerando:
 - HRR velocità di rilascio del calore
 - Opacità dei fumi
 - Tossicità degli effluenti
- Valutare l'importanza dei gas di combustione degli isolanti per la sicurezza degli occupanti

Fire Scenario

- Room Fire ISO 9705
 - Inner room volume slightly smaller than for ISO 9705, because of wall build-up inside ISO room
 - Fire source arm chair ignited by burner/curtain
- Two tests
- Identical furniture
- One test PIR, one test mineral wool

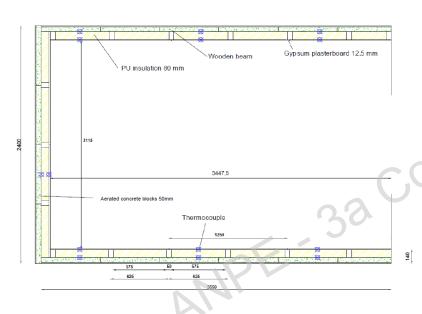
Scenario d'incendio

- Room test ISO 9705
 - Volume interno leggermente inferiore rispetto alla ISO 9705 a causa della costruzione del modello all'interno
 - Fonti dell'incendio: poltrona incendiata dal bruciatore/ tende

della stanza ISO

- 2 test
- Stessi arredi
- 1 test con schiuma PIR, 1 con lana minerale

Wall build up Variation


	Test 1	Test 2
Insulation Product	Mineral wool without	PIR insulation boards with Kraft
	facing (according to EN	aluminium facing on both sides
	13162)	(according to EN 13165)
Reaction to fire classification	A1	Е
according to EN 13501-1 for the	46,	
product as placed on the market		
Thermal conductivity [W/*m-1*K-1]	0.035	0.022
, , 50	(according to EN 13162)	(according to EN 13165)
Thickness of insulation product used in test (mm)	140	80

Room build up (PU Test)

- Inner room volume identical for both tests
- As for PU lower insulation thickness is needed, an extra wall layer between the ISO room walls and the insulation was added
 - A socket was placed 50 cm from the burner at a height of 30 cm in the wall opposite to the doorway

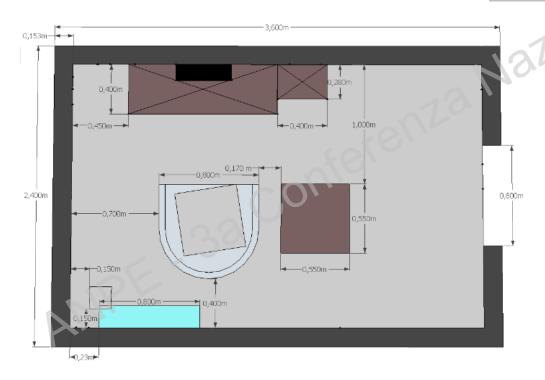
Modello della stanza (prova PU)

- Volume interno identico per entrambi i test.
- A causa del minor spessore di PU è stato aggiunto uno strato di muratura tra la camera ISO e l'isolante.
- Una presa elettrica è stata posizionata a 50 cm dal bruciatore e ad una altezza di 30 cm nella parete opposta alla porta.

Furniture / Contents

- Curtain (fabric)
- Armchair with 2 pillows
- Small table with a few magazines and a remote control
- TV bench
- 19" TV
- Bookcase with 7 identical books.

arredo/contenuto


- Tende (tessuto)
- Poltroncina con 2 cuscini
- Tavolino con alcune riviste e telecomando
- Tavolino tv
- Tv 19"
- Libreria con 7 libri uguali.

Room with Furniture

Stanza con arredi

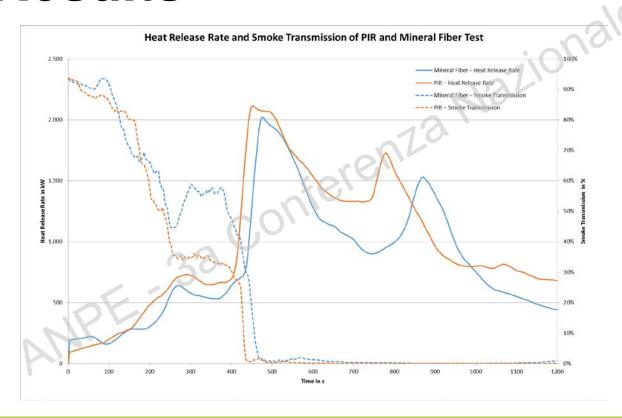
Room with Furniture

Mineral wool insulated

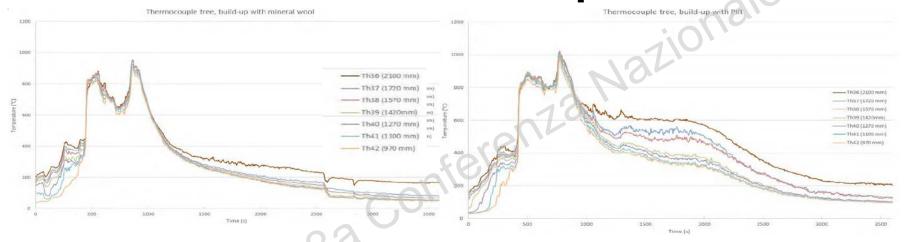
PIR insulated

Measured Data

- Heat Release Rate (HRR)
- Temperatures
 - Inside insulation
 - Behind plasterboard
 - Thermocouple tree near door opening inside the room (left side when looking through door)
- Smoke production rate [m²/s] (obscuration)
 - Measured in exhaust duct
 - Calculation according to ISO 9705 and EN 14390
- Combustion gases


Dati rilevati

- Velocità di rilascio di calore HRR
- Temperature
 - all'interno dell'isolante
 - Davanti al cartongesso
 - Serie di termocoppie vicino alla porta, all'interno della stanza (lato sin entrando)
- Velocità di produzione fumi [m²/sec] (opacità)
 - Misurata nel condotto di estrazione
 - Calcoli secondo Iso 9705 ed EN 14390
- Gas di combustione


Results

Results T-t – Thermocouple Tree

Mineral wool insulated room

PIR insulated room

Effluent Gas Components analysed in Exhaust Duct

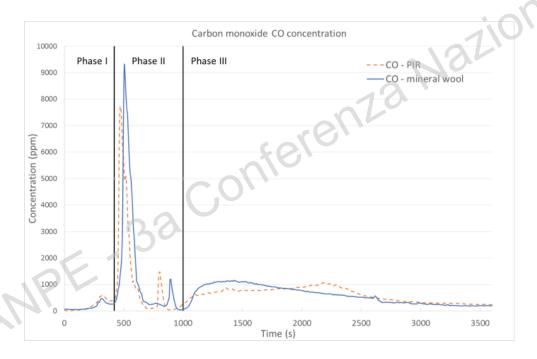
- Carbon monoxide (CO)
- Carbon dioxide (CO₂)
- Hydrogen cyanide (HCN)
- Formaldehyde (CHOH)
- Acrolein (C₃H₄O)
- Sulfur dioxide (SO₂)
- Hydrogen Chloride (HCl)

- Following slides show some graphs related to phases of fire development
 - Phase I: Growth phase
 - Phase II: Fully developed phase
 - Phase III: Decay phase

Componenti dei gas effluenti analizzati nel condotto di estrazione

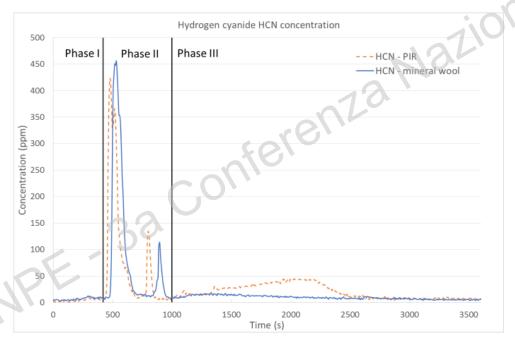
. . .

Le slides seguenti mostrano alcuni grafici relativi alle fasi di sviluppo dell'incendio Fase 1 fase di crescita fase 2 incendio totalmente sviluppato fase 3 fase di decadimento

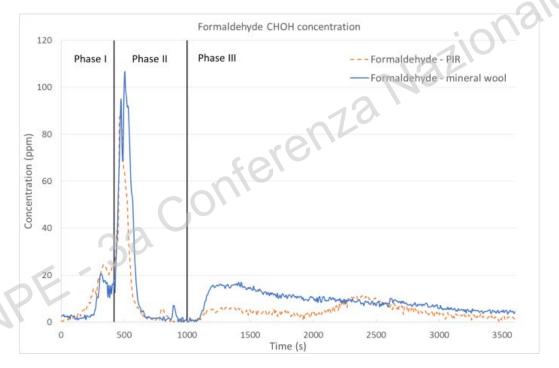

NO_x (measured by the sum of N₂O, NO and NO₂)

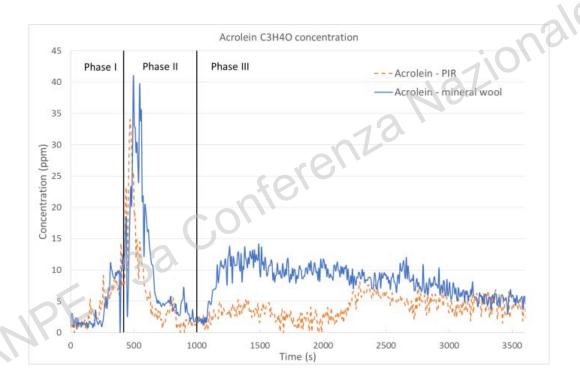
Carbon monoxide

(LC 50 for 30 minutes is 5700 ppm)



Hydrogen Cyanide


(LC 50 for 30 minutes is 165 ppm)

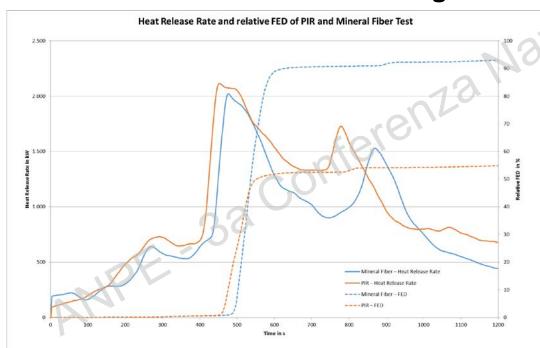

Formaldehyde

Acrolein

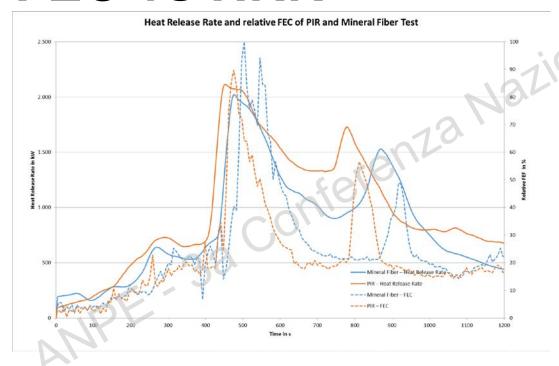
Impact of Toxicity

- Open system, constant flow measurement
- Calculations based on ISO 13571
- Fractional Effective Dose (FED) based on CO, CO₂, HCN
- Fractional Effective Concentration (FEC) based on CHOH, HCI, C₃H₄O, NO_x, SO₂

Impatto di tossicità


- Sistema aperto, misura del flusso costante,
- calcoli basati sulla ISO 13571,
- FED basata su CO,CO₂,HCN,
- FEC basata su CHOH,HCL C₃H₄O NO_X,SO₂

FED vs HRR


Relevant contribution to FED long before insulation contributed

FEC vs HRR

Observations

- Flashover approximately 6 minutes after ignition of armchair
- Cracking of gypsum board wall covering after 20 minutes
- Parts of gypsum board collapsing after 30 minutes
- Evidence of glowing and smouldering after 24 hours in the mineral wool test only

Osservazioni

- Flashover circa 6' dopo l'accensione della poltrona
- Rottura del cartongesso di rivestimento dopo 20'
- Pezzi di cartongesso cadono dopo 30'
- Evidenza di «glowing e smoulderig» (post combustione e post incandescenza)dopo 24 ore solo per il test con lana minerale

Findings

Two similar tests with similar readings

- Peak HRR at similar times
- Toxic hazard
 - in early stage similar
 - dominated by content
- Flashover readings for all gases in extremes higher than later when insulation starts to be involved
- Even in decay phase limited difference between both tests
 - CO and HCN far below LC50 concentrations

Considerazioni

2 test simili con osservazioni simili

- picco di HRR a tempi vicini
- rischi di tossicità
 - simili nella prima fase
 - determinati dai contenuti della stanza
- i dati per tutti i gas sono molto più alti al flashover che più tardi, quando viene coinvolto l'isolante
- anche nella fase di decadimento piccole differenze tra i 2 test
 - CO e HCN molto al di sotto dei valori LC50.

Conclusions

- Fire development and smoke obscuration and toxicity are content driven far before envelope contributes (20 minutes before gypsum starts failing)
- Performance of the complete build-up is more relevant, than that of construction products only
- As smoke inhalation contributes in case of occupant fatalities
 - Early detection is key
 - Other measures like safe egress design are most important

Conclusioni

- Lo sviluppo dell'incendio, l'opacità e la tossicità sono dovute al contenuto, ben prima del contributo della struttura (20' prima che il cartongesso cominci a cadere)
- Il comportamento del modello completo è più importante di quello del singolo prodotto da costruzione
- Poiché l'inalazione dei fumi risulta determinante per la mortalità degli occupanti
 - è determinante un rilevamento tempestivo
 - altre misure, quali la progettazione corretta delle uscite di sicurezza, sono molto importanti.

Thanks for your attention

Dipl. Phys. Edith Antonatus Technical Consultant PU Europe

Mail: external-consultant@pu-europe.eu