

From Recycled to Bio-based:

Low-Embodied Carbon Polyols for Rigid PU Foams

SUSTAINABILITY

At Coim, our top priority is ensuring that all new development projects are aligned with our values.

ESG Area	MATERIAL TOPICS	IMPACTS GENERATED BY COIM GROUP			
	Emission and fight against climate change	Generation of direct and indirect GHG emissions Generation of other significant emissions into the air			
ent	Energy •	Energy consumption Promotion of energy efficiency initiatives			
Environment	Waste and circularity	Waste production Recycling and reuse of waste and industrial symbiosis activities			
ŭ	Responsible use of materials	Use of renewable and recycled raw materials			
	Responsible use of water resources	Water resource consumption			
ø,	Creating shared value	Generation and distribution of economic value			
Governance	Responsible supply chain management	Creating a traceable supply chain Contribution to improving suppliers' ESG performance			
Gov	Privacy and data protection	Customer data breach and loss and poor cybersecurity management			
	Protection of human and labor rights	Respect for workers' rights			
	Responsible management and employee well-being	Employee satisfaction and well-being			
	Workers' health and safety	Workplace accidents Occupational diseases			
Social	Involvement and support to local communities	Positive social impact on local communities Positive economic impacts generated on local communities			
	Equal opportunities and non-discrimination	Creating an inclusive work environment Discrimination in terms of liability, compensation and career advancement			
	Development and training	Development and enhancement of workers' skills through training activities			
	Talent attraction and retention	Job creation			
ğ	Product safety and quality	Offering products of high quality and durability Non-compliance in the field of product health and safety			
Product	Sustainable innovation and product research	Sustainable product development			
	Customer satisfaction	Satisfaction of customers and their expectations			

COIM Sustainability Report

- More and more resources will be required from companies to comply with the directives deriving from sustainability but also to support customers downstream to fulfil their targets.
- In COIM, sustainability is an important topic that, every year, the company communicates all the actions undertaken in the various relevant areas through the sustainability report.
- A dossier that covers all areas of Company's activity, therefore not only
 environmental issues relating to production plants but also governance,
 social issues and development activities of increasingly sustainable
 products for downstream.

COIM has been endorsed to following certifications:

CARBON DISCLOSURE PROJECT

The **CDP** (formerly **Carbon Disclosure Project**) is an international non-profit organization with the aim of helping companies, cities, states, regions and public authorities **disclose their environmental impact**.

Last year **COIM SpA** disclosed their environmental impact through CDP.

ECOVADIS

EcoVadis is a **globally recognized assessment platform** that rates businesses' sustainability
Last year **COIM SpA** obtained the **gold medal**, with a score of **75 points**.

OK COMPOST

Obtained by COIM S.p.A. relating to several of its products (Adhesives, coatings and ink modifiers for flexible packaging materials)

REMADE IN ITALY®

Obtained by COIM S.p.A. in January 2022 for the ISOEXTER 40072 product

ECOVADIS RATING

COIM S.p.A. obtained a gold medal in 2022

UNI EN ISO 9001:2015 UNI EN ISO 14001:2015 UNI ISO 45001:2018

Obtained by COIM S.p.A. in 2021 for sensitive data security

UL Verification

Obtained by COIM US in 2022 for 18 ISOEXTER products

European Green Deal Roadmap

- The European Union has set itself the priority target of achieving
 climate neutrality by 2050, thus becoming the first zero-impact
 continent. Achieving this objective requires a complete energy,
 economic and social transformation of the continent.
- With the regulation on European climate legislation, the political ambition of achieving climate neutrality by 2050 becomes a legal obligation for the EU.
- With its adoption, the EU and its Member States committed to reducing net greenhouse gas emissions in the EU by at least 55% by 2030, compared to 1990 levels. This is a legally binding target, based on an impact assessment carried out by the Commission.

How to reach the target

The shift to a greener economy to a net-zero emissions society requires action on all fronts:

Mobility: the ways we travel must become drastically more environmentally friendly

Nutrition: our food production must become more environmentally friendly

Reforestation: our carbon sinks, such as forests, are declining and the trend should be reversed, including by managing forests more sustainably (emitting less but also **absorbing more**)

Finance: investments should increasingly contribute to the development of sustainable and climate-friendly projects

Industry: the way we produce goods must adapt to a circular economy model to reduce the use of primary RM

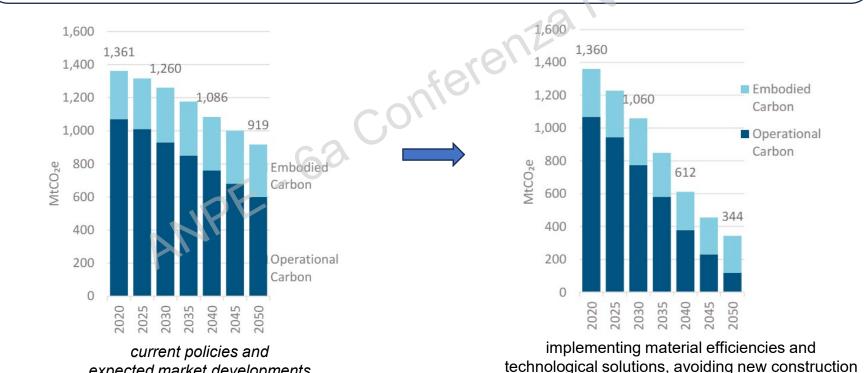
• Construction: EU Member States must prepare a national plan to ensure the decarbonisation and high energy efficiency of residential and non-residential buildings by 2050

Towards zero-emission buildings by 2050 Energy Performance of Building Directive (EPBD 4)

- for residential buildings, a reduction in the use of average primary energy of at least 16% by 2030, and of at least 20-22% by 2035, must be guaranteed compared to 2020;
- for non-residential buildings, Member States will have to set minimum energy performance requirements that must be respected by at least 16% of buildings by 2030, and by at least 26% by 2033.
- Newly constructed buildings will have to be zero-emission as early as 2030, with the deadline brought forward to 2028 if owned by public bodies.
- All buildings will progressively be characterized by materials and processes with zero environmental and climate impact throughout the entire cycle of life → all construction materials will have to evolve in terms of carbon footprint to allow the entire building to achieve its sustainability target.

EU POLICIES

WHOLE LIFE CARBON ROADMAP


regulatory measures and tools needed to achieve a decarbonized environment by 2050

"Embodied carbon" refers to the amount of greenhouse gases emitted throughout the entire life cycle of a product

"Operational carbon" is the greenhouse gases emissions associated with energy used to operate the building

expected market developments

HOW CAN EMBODIED CARBON BE INFLUENCED and MEASURED?

1. Raw Material Selection

2. Renewable Energy

3. Forestation

4. Waste Reduction

5. Efficient Manufacturing

6. Transport Optimization

7. Life Cycle Assessment (LCA)
Environmental Product Declaration (EPD)

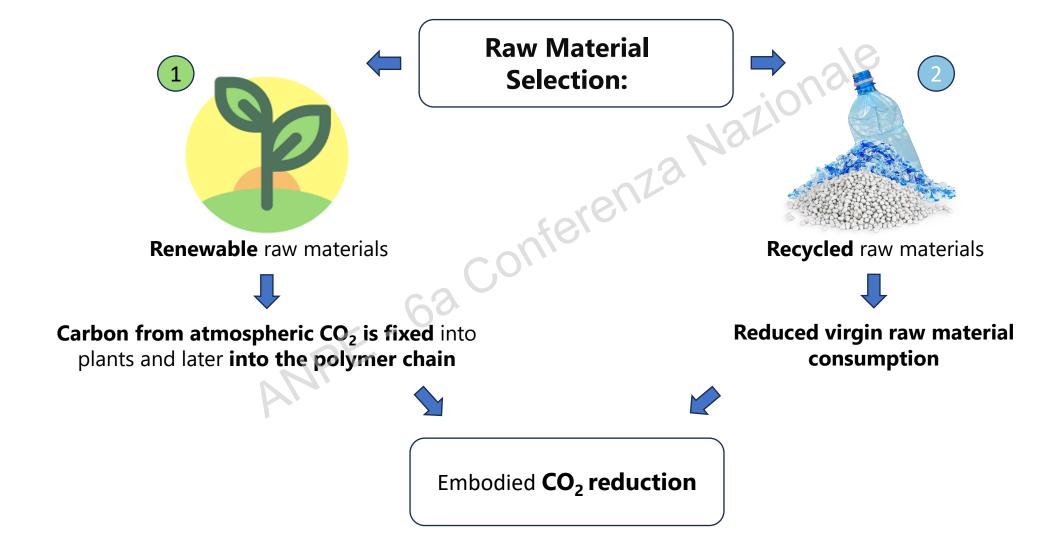
Quantification

8. Policy & Regulation

ECO-DESIGN

COIM SpA has purchased the SimaPro software license, through which it is possible to conduct **Life Cycle Assessment** and/or **Product Carbon Footprint** studies.

The reference database used to extrapolate the data is **Ecoinvent**, one of the **most used LCA databases** in the world.



2023/2024

COIM SpA carries out <u>internal</u> **Cradle-to-Gate assessment** of different products according to ISO 14040 & 14044

HOW CAN EMBODIED CARBON BE INFLUENCED and MEASURED?

Isoexter E: polyols from renewable sources

Product name	OH value [mgKOH/g]	Viscosity @ 25°C [mPa·s]	Renewable based	Recycled based	Certifica Renewable -	tions Recycled
Isoexter E 40113	250	3500	yes	-	ISCC CERTIFIED	-
Isoexter E 40145	250	3500	yes	yes	ISCC CERTIFIED	REMADE*

Isoexter E: embodied CO₂

third-party verified external LCA

Polyol	Bio-content	Recycled content	GWP (kg CO ₂ eq/kg)	GWP saving
APP PU Europe average	-	renze	1,63**	-
Isoexter E 40113	yes	onie.	0,49*	-70%*
Isoexter E 40145	yes	yes	0,11*	-93%*

- → Impact indicators according to EN 15804 available upon request
- → Data integrable into EPD

^{*}with a carbon sequestration approach

^{**} https://www.pu-europe.eu/wp-content/uploads/2023/06/Eco_profile_full_report_for_Aromatic_Polyester_Polyols_APP.pdf

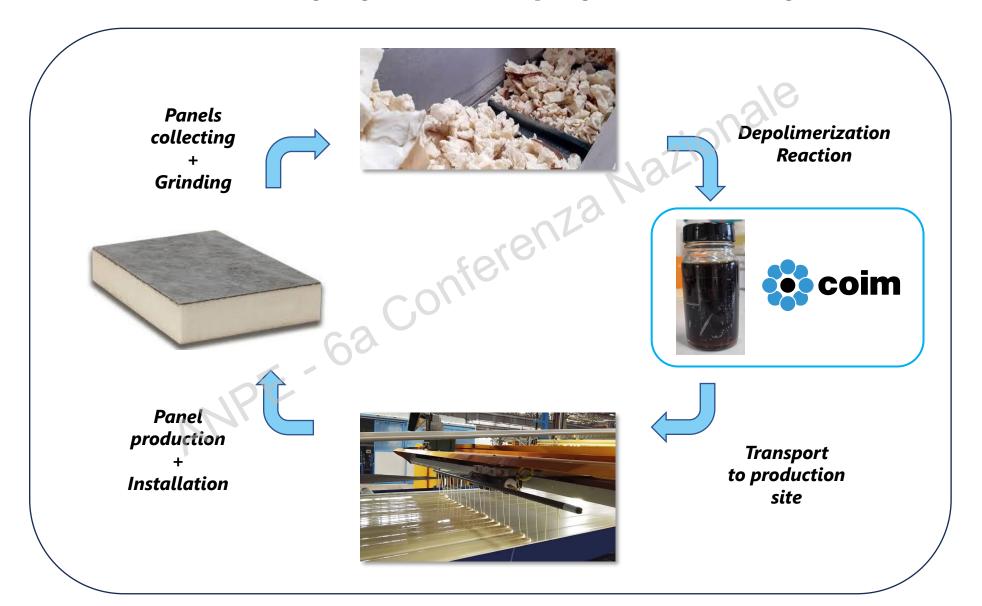
Circular Economy: synthesis of polyols from Recycled PET

Chemical recycling is any process by which a polymer is chemically reduced to its original monomer form so that it can eventually be processed and remade into new plastic materials.

Polyols from recycled raw materials

	Product name	Fn	OH value [mgKOH/g]	Viscosity @ 25°C [mPa·s]	Application	Recycled content	ΔGWP * (kgCO₂eq/kg)	Note
	Virgin RM Polyol	-	-	-	-	{6	Reference	Reference
	140072	2,0	190	4000	IB	30%	-17 %	Excellent processing
	Polyol A	2,0	240	2000	SF	30%	+37 %	Low viscosity
	Polyol B	2,0	240	4000	ALL	42%	+29 %	Excellent fire properties
			-	714.				
/	140089	2,0	240	4000	ALL	HIGH	-37 %	Lowest embodied CO ₂

Eco-designed product


→ ECO-DESIGN MAKES THE DIFFERENCE!

UPCOMING

Circular Economy: synthesis of polyols from Recycled PU

UPCOMING

Circular Economy: synthesis of polyols from Recycled PU

Acidity	OH value	Viscosity	PU content [%]	ΔGWP vs Ref
[mgKOH/g]	[mgKOH/g]	@ 25°C [mPa·s]		(kgCO₂eq/kg)
< 3,0	Standard	Standard	Up to 50%	-35%*

POLYESTER POLYOLS AND PU SPECIALIST SINCE 1962
COIMGROUP.COM